Extensions 1→N→G→Q→1 with N=C22 and Q=C2xC60

Direct product G=NxQ with N=C22 and Q=C2xC60
dρLabelID
C23xC60480C2^3xC60480,1180

Semidirect products G=N:Q with N=C22 and Q=C2xC60
extensionφ:Q→Aut NdρLabelID
C22:(C2xC60) = A4xC2xC20φ: C2xC60/C2xC20C3 ⊆ Aut C22120C2^2:(C2xC60)480,1126
C22:2(C2xC60) = D4xC60φ: C2xC60/C60C2 ⊆ Aut C22240C2^2:2(C2xC60)480,923
C22:3(C2xC60) = C22:C4xC30φ: C2xC60/C2xC30C2 ⊆ Aut C22240C2^2:3(C2xC60)480,920

Non-split extensions G=N.Q with N=C22 and Q=C2xC60
extensionφ:Q→Aut NdρLabelID
C22.1(C2xC60) = C15xC8oD4φ: C2xC60/C60C2 ⊆ Aut C222402C2^2.1(C2xC60)480,936
C22.2(C2xC60) = C15xC23:C4φ: C2xC60/C2xC30C2 ⊆ Aut C221204C2^2.2(C2xC60)480,202
C22.3(C2xC60) = C15xC4.D4φ: C2xC60/C2xC30C2 ⊆ Aut C221204C2^2.3(C2xC60)480,203
C22.4(C2xC60) = C15xC4.10D4φ: C2xC60/C2xC30C2 ⊆ Aut C222404C2^2.4(C2xC60)480,204
C22.5(C2xC60) = C15xC42:C2φ: C2xC60/C2xC30C2 ⊆ Aut C22240C2^2.5(C2xC60)480,922
C22.6(C2xC60) = C15xC2.C42central extension (φ=1)480C2^2.6(C2xC60)480,198
C22.7(C2xC60) = C15xC8:C4central extension (φ=1)480C2^2.7(C2xC60)480,200
C22.8(C2xC60) = C15xC22:C8central extension (φ=1)240C2^2.8(C2xC60)480,201
C22.9(C2xC60) = C15xC4:C8central extension (φ=1)480C2^2.9(C2xC60)480,208
C22.10(C2xC60) = C4:C4xC30central extension (φ=1)480C2^2.10(C2xC60)480,921
C22.11(C2xC60) = M4(2)xC30central extension (φ=1)240C2^2.11(C2xC60)480,935

׿
x
:
Z
F
o
wr
Q
<